更多>>精华博文推荐
更多>>人气最旺专家

赵帅

领域:爱丽婚嫁网

介绍:一位妈妈带着9岁的儿子鹏鹏正在咨询课程。...

窦群

领域:硅谷网

介绍:图书馆可以采用RFID技术,将图书馆现有书架改造成智能书架,从而提高了原有书架的利用率,也降低了建立基于RFID技术的智能图书馆的成本;可以对书架上的图书进行实时监控的动态管理;可以对图书的利用率进行统计,以便图书馆更加科学合理地采购图书;可以更加方便快捷的对图书进行自动分拣和流通管理【9】。利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66

利来国际旗舰厅app
本站新公告利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66
lmx | 2019-03-22 | 阅读(932) | 评论(737)
撒切尔夫人曾说,中国现在还称不上一个强国,因为中国的文化还不具有影响其它国家的力量,中国只出口电视机,而不是电视节目和思想观念。【阅读全文】
利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66
5oj | 2019-03-22 | 阅读(377) | 评论(858)
j5o | 2019-03-22 | 阅读(793) | 评论(42)
(二)加强对司法工作的监督。【阅读全文】
6id | 2019-03-22 | 阅读(650) | 评论(760)
最后这批货我们司能有营利的,而且顺利的准时出货。【阅读全文】
p6k | 2019-03-22 | 阅读(790) | 评论(493)
第四单元发展社会主义市场经济;;考点突破二:市场调节固有的弊端;考点突破三:整顿和规范市场秩序;如何规范市场秩序;;热点链接:我国创新和完善宏观调控方式,先后提出区间调控、定向调控精准调控、相机调控,促进经济社会发展。【阅读全文】
ol4 | 2019-03-21 | 阅读(572) | 评论(773)
代表人物:胡适代表:康有为“中国这个民族是“又愚又懒的民族……”“中国立国数千年,礼义纲纪,云为得失,皆奉孔子之经,……”一、中华文化复兴的必然选择1、文化复兴的求索奉行“全盘西化”论和“文化复古主义”都不能解决中华文化向何处去的问题,无法使中华文化走上复兴之路。【阅读全文】
awx | 2019-03-21 | 阅读(96) | 评论(516)
PAGE考点41两条直线的交点坐标要点阐述要点阐述1.两条直线的交点已知两直线l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0.若两直线方程组成的方程组eq\b\lc\{\rc\(\a\vs4\al\co1(A1x+B1y+C1=0,A2x+B2y+C2=0))有唯一解eq\b\lc\{\rc\(\a\vs4\al\co1(x=x0,y=y0)),则两直线相交,交点坐标为.2.方程组的解的个数与两直线的位置关系方程组的解交点两直线位置关系无解两直线无交点平行有唯一解两条直线有1个交点相交有无数个解两条直线有无数个交点重合典型例题典型例题【例】两条直线和的交点在轴上,那么的值是(  )A.–24B.6C.6D.以上都不对【答案】C【思路归纳】这类问题,一般先求出交点,让交点满足所在象限的条件,来解决相关问题.小试牛刀小试牛刀1.直线x+2y-2=0与直线2x+y-3=0的交点坐标是(  )A.(4,1)B.(1,4)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),\f(1,3)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),\f(4,3)))【解题技巧】把求两条直线的交点问题转化为求它们所对应的方程组成的方程组的解的问题.2.经过直线l1:x-3y+4=0和l2:2x+y+5=0的交点,并且经过原点的直线的方程是(  )A.19x-9y=0B.9x+19y=0C.3x+19y=0D.19x-3y=0【答案】C【解析】由eq\b\lc\{\rc\(\a\vs4\al\co1(x-3y+4=0,,2x+y+5=0,))得eq\b\lc\{\rc\(\a\vs4\al\co1(x=-\f(19,7),,y=\f(3,7).))∴l1与l2的交点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(19,7),\f(3,7))).∴所求的直线方程为y=-eq\f(3,19)x,即3x+19y=0.故选C.3.直线y=3x-4关于点P(2,-1)对称的直线l的方程是(  )A.y=3x-10B.y=3x-18C.y=3x+4D.y=4x+3【答案】A【解析】设M(x,y)是l上任一点,M关于P(2,-1)的对称点为M′(4-x,-2-y)在直线y=3x-4上,则-2-y=3(4-x)-4,整理得y=3x-10.故选A.【解题技巧】点关于直线的对称问题可转化为中点和垂直问题来解决.4.直线y=2x+10,y=x+1,y=ax-2交于一点,则a的值为(  )A.eq\f(1,2)B.-eq\f(1,2)C.eq\f(2,3)D.-eq\f(2,3)【答案】C【解析】由eq\b\lc\{(\a\vs4\al\co1(y=2x+10,,y=x+1,))解得eq\b\lc\{(\a\vs4\al\co1(x=-9,,y=-8,))即直线y=2x+10与y=x+1相交于点(-9,-8),代入y=ax-2,解得a=eq\f(2,3).5.两条直线和的交点在第四象限,则的取值范围是(  )A.(–6,2)B.C.D.【答案】C【解析】解出交点,由不等式组解得.6.若三条直线l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0能构成一个三角形,求k的取值范围.考题速递考题速递1.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线方程是(  )A.2x+y-8=0B.2x-y-8=0C.2x+y+8=0D.2x-y+8=0【答案】A【解析】首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y-6=-2(x-1),即2x+y-8=0.2.已知直线与的交点在轴上,则的值为()A.4B.–4C.–4或4D.与的取值有关【答案】B【解析】由得.∵交点在轴上,∴,∴.3.已知两条直线l1:ax+3y-3=0,l2:4x+6y-1=0,若l1与l2相交,则实数a满足的条件是________.【答案】a≠2【解析】l1与l2相交则有:eq\f(a,4)≠eq\f(3,6),∴a≠2.4.求过两条直线x-2y+4=0和x+y-2=0的交点P,且满足下列条件的直线方程.(1)过点Q(2,-1);(2)与直线3x-4y+5=0垂直.数学文化数学文化相交直线相交直线在实【阅读全文】
of5 | 2019-03-21 | 阅读(65) | 评论(637)
专题四20世纪以来中国重大思想理论成果第一课孙中山的三民主义1901年《辛丑条约》签订1885年中法谅山和平谈判1895年《马关条约》签订孙中山17岁时的照片革命时期的孙中山摄于1900年1915年孙中山与宋庆龄于日本东京结婚一、孙中山首倡三民主义1、背景2、同盟会的成立及《民报》3、三民主义的内容及认识因为我汉人有政权才是有国,假如政权被不同族的人所把持,那就虽是有国,却已经不是我汉人的国了。【阅读全文】
利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66,利来国际娱乐w66
vci | 2019-03-21 | 阅读(879) | 评论(107)
但18世纪殖民地的突然获取,其丰富的资源和广阔的市场,使英格兰摆脱了与中国江南同样艰难的生态制约,就此与世界其他地区“分流”……——彭慕兰《大分流:欧洲、中国及现代世界经济的发展》▲欧洲14、15世纪产生了资本主义萌芽,中国资本主义萌芽的时间也差不多,但欧资本主义迅速发展成为资产阶级革命的物质基础,而中国却一直萌而不发,试分析原因。【阅读全文】
axy | 2019-03-20 | 阅读(990) | 评论(722)
近年来国内小草浆厂因环保问题的日益突出而逐渐关闭,已经开始迫使我国造纸行业开始大力发展木材制浆造纸,因此,发展木材制浆造纸已成为我国造纸行业必由之路和必然趋势。【阅读全文】
b4c | 2019-03-20 | 阅读(29) | 评论(962)
研修班的学习,从某种意义上讲,与其说是获得新知,不如说是更新观念,或者是让以前的教学理念有一个重新的建构。【阅读全文】
4fg | 2019-03-20 | 阅读(456) | 评论(147)
本文系版权作品,未经授权严禁转载。【阅读全文】
a4f | 2019-03-20 | 阅读(373) | 评论(460)
总结是应用写作的一种,是对已经做过的工作进行理性的思考。【阅读全文】
pr3 | 2019-03-19 | 阅读(272) | 评论(511)
书评和序跋当然要靠船下篙,但有些地方也要超越具体对象,涉及一般或高远之处,这才不会死于题下,而有飘逸灵动之致。【阅读全文】
uho | 2019-03-19 | 阅读(427) | 评论(371)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
共5页

友情链接,当前时间:2019-03-22

利来国际旗舰版 w66利来娱乐 利来国际ag旗舰厅app 利来国际最给利的老牌 利来国际官网
w66.com利来国际 www.w66.com 利来 利来国际家居集团 利来国际w66平台 w66利来
利来电游官方网站 利来国际w66客服 利来最给利的网站 利来国际备用 w66利来娱乐公司
利来国际手机客户端 w66.com w66利来娱乐公司 w66利来娱乐
正安县| 三明市| 榆林市| 秦安县| 荆门市| 武汉市| 武穴市| 白山市| 泽普县| 湄潭县| 阿拉善右旗| 呼图壁县| 桃江县| 鄂托克旗| 油尖旺区| 襄汾县| 文登市| 防城港市| 奉化市| 尉氏县| 喜德县| 四川省| 新余市| 垣曲县| 南澳县| 富蕴县| 上饶市| 玛沁县| 青田县| 紫金县| 富平县| 高平市| 汉中市| 连州市| 靖宇县| 开阳县| 额尔古纳市| 建瓯市| 西宁市| 卫辉市| 英德市| http://m.75704145.cn http://m.13079176.cn http://m.51326703.cn http://m.62818465.cn http://m.42100559.cn http://m.31822157.cn